Dodd-Walls Centre

Photonic Sensors and Imaging, Ph.D.

About

The Photonic Sensors and Imaging is offered by the Dodd-Walls Centre.

The imaging and sensing theme aims to produce the next generation of sensors and imaging systems needed for scientific and industrial applications. This will be done by extending our understanding of the basics of the way light and sound interact with matter and then using this to construct new sensors and imaging systems that solve specific problems in 3 fields: biomedical, geophysics and primary industries. Our experimental work will be supported by strong theoretical and numerical models. Our research will be guided by the need of our scientific and industrial collaborators. Our goal is to produce accurate, minimally invasive, in situ and in vivo, cost effective sensing and imaging techniques. Regular meeting will be organised to coordinate efforts between the team members. For each technique we consider, we will advance the field and seek potential commercialisation. Most of our modelling software as well as some of our data will be made available online for the benefit of the scientific community.

Optical Coherence Tomography and Acousto-Optic Imaging

We will investigate the limits of optical coherence tomography (OCT) and its complementarity with acousto-optic (AO) techniques. These techniques open the way for functional imaging by using the information resulting from the interaction between the sample and the probing wave (be it sound or light). Our project will span both fundamental and applied aspects with a strong theoretical backbone. Our goal is the holy grail in imaging: real time, non-invasive, label-free sample recognition and characterisation with high spatial resolution. New contrast agents will be investigated such as chromatic dispersion, speckle and Doppler OCT for OCT and dispersion length mapping for AO imaging.

Non Invasive Biomedical Imaging and Sensors

We exploit the techniques described in (SI1) for specific applications in the biomedical area. First, based on a Monte Carlo model we recently developed, we will deliver an online computational research tool for imitation of 2D/3D OCT-based images of human skin, connective tissues, and other biological materials of interest.

Remote Sensing and Imaging for Geophysical Applications

The field of optical remote sensing is not limited to biomedical applications. Here we plan to apply our technology to rock and climate physics. Our rock physics research helps to address pressing energy and environmental issues. Recent work by the team focuses on the connections between important chemical reactions in the subsurface (for example, during CO2 sequestration), and the imprint of these reactions on elastic (seismic) waves probing the earth.

We will also use highly stable ring laser small gyroscopes to determine the length of day (which in turn is required to maintain the GPS). In addition, the larger version of these lasers makes powerful and very sensitive seismographs and we will use them to detect variation in the earth rotation

We aim to realize the for the first time 3D seismic mapping using data from gyroscope lasers. We also plan to develop a laser-based strain meter for broad-band characterization of the elastic properties of rocks.

Improved Sensors for NZ Primary Industries

We are working to create the next generation of photonic sensors that are uniquely adapted to the needs of NZ and have the potential to be a niche high-technology high-value export industry in their own right. An example is the detection of previously unknown substances, such as contaminants in biological samples like milk, which requires the development of new techniques and instruments. We propose to develop 4 complementary approaches that could ultimately be combined to offer a complete range of sensors for the primary industry to detect bacteria, adulterants or the origin of the components. The techniques we are working with are fluorescence, mass spectroscopy, and near-IR, mid-IR, Raman and low frequency Raman spectroscopies.

Additionally, using new contrast agent in fluorescence, we will investigate how biological processes can be monitored. This will be done in collaboration with microbiologists and using contrast agent such as ZnO and lanthanide doped nano particles.

Detailed Programme Facts

Programme Structure

Courses Included:

  • Using nonlinear microscopy to study brain cell and network function in autism spectrum disorder  
  • Optical Biopsies using Optical Coherence Tomography to detect early signs of chronic diseases.
  • Resonant Ultrasound Spectroscopy
  • Laser ultrasonic rock physics under high pressure and/or temperature
  • Quality control of timber and fruit products with laser ultrasound
  • Sensing with THz micro resonators
  • Generating cw THz radiation at 0.57 GHz to be used for a THz hygrometer
  • Portable THz imaging device
  • Bacteria identification using spectroscopic fluorescence
  • High Speed Fruit Scanner
  • Optical Method to Determine Storage Breakdown Disorder in Fruit.
  • Virtual Peeling of Produce
  • High Brightness Lanthanide Doped Nanoparticles for Applications in Optical Imaging
  • Frequency Upscaled Ring Laser Gyroscopes
For more information, please visit programme website.

English Language Requirements

This programme requires students to demonstrate proficiency in English.

Take IELTS test

Academic Requirements

To apply for a postgraduate scholarship, choose a potential supervisor from our list of DWC researchers or the list of specific projects below, and contact the researcher by e-mail, providing a CV and academic transcript and names of two referees.

For more information please visit the program website.

Funding

Check the programme website for information about funding options.

StudyPortals Tip: Students can search online for independent or external scholarships that can help fund their studies. Check the scholarships to see whether you are eligible to apply. Many scholarships are either merit-based or needs-based.